
J .  Fluid Mech.  (19681, vol. 32, pcwt 3, pp.  465-488 

Printed in Great Britain 
465 

A linear model of the Antarctic circumpolar current 
By A. E. GILL 

Department of Applied Mathematics and Theoretical Physics, 
Universiky of Cambridge 

(Received 20 July 1967) 

A simple frictional wind-driven model of the Antarctic circumpolar current is 
examined. The geometry includes what are thought to be the main features 
effecting the current, namely a gap corresponding to Drake Passage and a partial 
barrier corresponding to the South American peninsula. Solutions obtained by 
both numerical and analytical methods are presented. The analytic solution, 
valid for small values of a friction parameter, enables the total rate of transport 
of water by the current to be calculated as a function of the friction parameter 
and the wind stress distribution. The width which controls the rate of transport 
by the current tends to be the narrowest encountered rather than the average 
width as assumed in earlier zonal models. However, the current spreads out to 
several times this width due to frictional effects. The values of the eddy viscosity 
required to give a rate of transport of the observed order are about lo3 cm2/s for 
a bottom-friction model and of the order of los cm2/s for a lateral friction model. 

1. Introduction 
The Southern Ocean, or Antarctic Ocean, occupies a large percentage of the 

zonal strip of the earth's surface between the fortieth and seventieth parallels 
(south). Besides being an important water mass in itself, the Southern Ocean 
serves as a connecting link between the other major oceans. I ts  most obvious 
dynamic feature is the strong eastward circumpolar current, an interesting 
descriptive article on which has recently been written by Kort (1962). The current 
extends northwards to about 40" S, which is the reason for choosing that parallel 
as the northern limit of the Southern Ocean. Estimates of the total transport of 
water by the current vary widely since they depend on the choice of a 'reference 
level'. Kort, for instance, estimates the total transport as 150 million cubic 
metres per second. Gordon (1967) made use of a water mass analysis to estimate 
reference levels in Drake Passage and on that basis obtained a total transport of 
220 million cubic metres per second. 

Theoretical models of the circumpolar current have been reviewed by Crease 
(1964) and summarized more recently by McKee (1966). The earlier models were 
zonally symmetric, the Southern Ocean being treated as a broad channel bounded 
by two parallels of latitude about 25" apart. The currents were driven by a wind 
stress a t  the surface and opposed by some form of frictional stress. However, for 
generally accepted values of the friction parameters, the transports predicted 
by these models were far in excess of those observed, indicating a gross over- 
simplification somewhere in such models. Stommel (1957) suggested that the 
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geometry of these models was chiefly to blame and pointed out that in closed 
basins, the currents are essentially frictionless and determined by the Sverdrup 
(1947) theory, except in narrow boundary layers. For these frictionless currents 
to exist, meridional barriers must cross each circle of latitude. Stommel drew 
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FIGURE 1. The geometry of the model. (a)  Mercator projection (N-S scale exaggerated). 
( b )  Polar projection. 

attention to the fact that the South American peninsula and Graham Land 
(PaImer Peninsula) form meridional barriers which span all but about 5" of 
latitude, and the island arc to the east partly spans the remaining 5". He therefore 
suggested the possibility that 'the current is essentially frictionless except in a 
narrow region just after it passes through Drake Passage '. Wyrtki (1960) made 
some calculations based on the Sverdrup theory, but this breaks down a t  latitudes 
for which there are no meridional barriers. Stommel (1962) later examined a 
model where this difficulty was overcome by treating Drake Passage as a porous 
section in a meridional wall. 

In this paper it is proposed to examine the effects of a partial meridional 
barrier with a gap corresponding to Drake Passage. The geometry chosen for 
this study is shown in figure 1 and is about the simplest that can include the 
above features. x, y are co-ordinates measuring distance eastwards and north- 
wards respectively so that L represents the distance around a circle of latitude 
and B the width of the passage. The origin corresponds to a point a t  the southern 
end of Drake Passage, and the line y = 0 can be thought of as a crude approxima- 
tion to the Antarctic coastline. The lines x = 0 and x = L represent the same 
meridian, as is shown by the polar projection, the section y > B being a solid 
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barrier akin to the South American peninsula. A boundary may be introduced 
at y = D if desired. Then the model ocean becomes a zonal channel in the limiting 
case B = D and a closed basin in the other extreme B = 0. Thus for 0 < B < D 
the model ocean can be regarded as having a geometry intermediate between these 
two limiting cases. Stommel, in 1957, suggested a geometry something like that of 
figure 1 and gave a qualitative idea of how he expected the currents to be 
distributed, but did not work out details. Here the details will be worked out for a 
simple dynamical model. The main concern is to understand effects of the 
geometry so that many other effects such as bottom topography (considered by 
Kamenkovich 1962), thermohaline effects (see Duncan 1966) and the effect of 
peripheral discharge from Antarctica (see Barcilon 1966, 1967) will not be 
included in the basic model, although effects of bottom topography will be 
discussed in $6.  

The main effort is directed at  solving the problem for a bottom friction model. 
The relevant dynamical equations are set out in $ 2  and the parameters of the 
model discussed. In  $ 3  a picture of the structure of the solution is built up, this 
being shown in figure 2. Some numerical solutions obtained by Dr J. W. Elder 
are presented in $ 4. These are supplemented by an appropriate analytical solu- 
tion found in $5. The latter solution enables the total transport of water by the 
current to be estimated for any zonal wind stress distribution and any sufficiently 
small value of a friction parameter, some results being depicted in figure 6. These 
results form a basis for a comparison with observations in § 6. Effects of (a )  non- 
zonality of the wind stress, ( b )  the barrier formed by New Zealand and the 
shallow water to the south, and (c)  large-scale bottom topography are discussed. 
The form of the analytic solution for a lateral friction model is also deduced in 
$ 6 and a discussion made as to which form of friction is most realistic. 

2. The model, equations and boundary conditions 
Dynamically the model is essentially that used by Stommel(l948). The ocean 

is assumed to be of constant depth, H ,  and the horizontal momentum equations, 
representing a balance between the horizontal pressure gradient, the Coriolis 
force and the friction stress, are integrated over this depth. A rectangular co- 
ordinate system is used with x, y ,  z measuring distances eastwards, northwards 
and upwards respectively. An approximation is of course involved in using such a 
system but this is not significant when the crude nature of the model is con- 
sidered. If u, v are the eastward and northward velocity components and p the 
density, the integrated equations involve the mass transport components 

H II 

u = f 0 pudz, v = f  0 pvdz, 

and the integral of the pressure p ,  namely 
H .=I 0 pax. 

The integrated equations have the form 
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where ,f = 2Q sin 0 is the Coriolis parameter, !2 being the angular velocity of the 
earth and 0 the latitude. X ,  Y are the components of stress exerted on the surface 
by the wind and on the ocean bottom due to friction. Lateral friction has been 
ignored so that the equations, apart from the inclusion of bottom friction, are 
those used by Sverdrup (1947, equation (9)). The necessity of a frictional term at 
latitudes for which there is no meriodinal barrier is immediately seen when the 
first of (2.1) is integrated along a circle of latitude. This gives 

that is, the surface force on a narrow zonal strip is balanced by the frictional force 
on the bottom. In contrast, at latitudes where meridional barriers do exist, the 
surface force can be balanced by a pressure difference and so friction forces do 
not necessarily play an important role. 

Following Stommel, a linear friction law is assumed so that the equations 
become 

with r a constant. This is a valid first approximation for laboratory models in 
which there is laminar flow, the Ekman layers are thin compared with the depth 
H of t8he fluid, and X,/X is small compared with P/f. Then 

T = (V/f1/2H2)+, (2.4) 

where Y is the kinematic viscosity of the fluid. Equation (2.4) is often used in 
more general circumstances to define an eddy viscosity Y corresponding to a 
given value of Y. 

In  addition to the dynamic equations (2.3) there is the continuity require- 
ment, which implies the existence of a transport function Y such that 

u = -Y,, v = irz. (2.5) 

Substitution in (2.3) and elimination of P leads to (cf. Stommel 1948, equation 

where /3 = df ldy  = (2!22/R) cost', R being the radius of the earth, and can be 
treated as a constant since the latitudinal scale is assumed small compared with 
R. The subscript 'surface' has been dropped so X, Y represent components of 
the surface wind stress. 

The boundary conditions are that there be no flux across solid boundaries, 
that is, that Y be constant on solid boundaries. The value of the constant can be 
set to zero on the boundaries x = 0 and x = L but Y will have a different value 
on y = 0. This value is a measure of the total transport through the gap and so 
will be designated Ybt. Equation (2.6) together with these boundary conditions 
is not enough, however, to give a unique solution as some information has been 
lost in eliminating the pressure. The lost condition is the continuity of pressure 
along a closed path which circumscribes the pole. Choosing a circle of latitude 
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for the path, the lost condition is given by (2.2)) which, with the aid of (2.3), may 
be written in the form 

Jrrlr,dl: +Jrxdx  = 0,  (2.7) 

the integration being along a path y = constant where 0 < y < B. This condition 
was noted in a more general form by Kamenkovich (1961). 

There are several parameters needed to describe the system most of which can 
be regarded as the ratios of length scales. The geometry involves three lengths 
B, L and D while the governing equation introduces a fourth 

W = rip. (2.8) 

This length, which depends on the friction coefficient, is a measure of the width 
of the western boundary current found in Stommel's solution for a closed basin. 
Choosing B as the standard length, the three parameters corresponding to these 
four lengths may be defined as 

(2.9) I e = LIB, 

a = BID, 

and S = W/B = r/pB.  

In  addition other parameters may be required to describe the wind stress field, 
for instance, if this has the form 

X = Tsin(Ky+a),  Y = 0, (2.10) 

k = K B  (2.11) 

and the phase angle a. The constant T gives the wind stress scale which sets the 
scale for the transport function but gives rise to no further parameters since the 
problem is linear. 

The appropriate value of the standard length B is not obvious because of the 
complicated coastline shapes and bathymetry of the area around Drake Passage. 
In  this paper, shallow water regions will be treated as belonging to the land area 
so that the latitude y = B of the southern tip of South America will be taken as 
that of Diego Ramirez Island, that is about 56.6" S. The latitude y = 0 of the 
northern tip of the peninsula opposite will be taken as that of Elephant Island, 
that is about 61.0" S. This makes B about 500 km and t about 42. 

Using B as a standard length the equations and boundary conditions can be 
put in non-dimensional form. Non-dimensional co-ordinates (2, Q), stress 
components (2, P) and stream function 9 will be defined as follows: 

two parameters are involved, namely the wave-number parameter 

Then, dropping circumflexes, the equation becomes 

and t.he condition (2.7) becomes 

(2.12) 

(2.13) 
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The boundary conditions are 

(2.15) 

$ = O  on x = O , e  for y > 1 ,  

is periodic in x with period P 
31. = $-tot on Y = 07 

for 0 < y < 1. 

The boundary condition on y = d will be discussed later. If it  is regarded as a 
solid boundary, then the appropriate condition is 

@ = O  on y = d .  (2.16) 

3. Structure of the solution for small friction 
In this section, the behaviour of the solution as the friction parameter 6 

tends to zero will be discussed. Knowledge of this behaviour will be exploited 
in later sections. It will not necessarily be assumed that the product 

B = SP = rL//3B2 (3.1) 

also approaches zero in view of the large values of the aspect ratio which are of 
interest. Discussion will be limited to the case in which the wind stress is given by 

X = X(y) ,  T = 0. 

Note that the governing equation (2.13) is of the same form as found in certain 
forced convection problems (Goldstein 1938), so that the discussion below could 
as well be carried out in terms of an analogue system. 

It is convenient to discuss the regions y > 1 and y < 1 separately. The region 
y > 1 may be regarded as a closed basin with an unknown condition on the 
boundary y = 1, so the solution in this region may be expected to have properties 
in common with the solution found by Stommel (1948) for a closed basin. As 
6+ 0, the latter solution tends to a solution of the parabolic equation 

w v g + $ x  = -X‘(Y), (3.2) 

except at  the western boundary where a boundary layer of thickness of order 
6 develops and the solution tends to a solution of 

w x x +  $-x = 0. (3.3) 

The appropriate solution $M8 of (3.2) can be expressed as a power series in 
B = 6P, with Sverdrup’s (1947) solution as the leading term, namely 

It is convenient to refer to this solution as the modified Sverdrup solution. 

y = d,  a correction q5 must be added to $-Ms, so let 
If @Ms does not happen to satisfy the appropriate conditions on y = 1 and 

@ = $ - M S + $  for Y > 1 7  (3.5) 

or rather, let $- -#  be a solution of the full equation (2.13) which tends to 
$-Ms as 6-t 0. Then q5 satisfies the homogeneous equation 

6($m + $vv) + 9, = 0, (3.6) 
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vanishes on x = 0, t ,  and has given values on y = 1, d. Eckhaus & de Jager 
(1966, 94) have shown that, except at  the western boundary, such solutions 
tend to solutions of the homogeneous parabolic equation 

4 4 l U  + 9, = 0 (3.7) 

as 6+ 0, and that errors are of order (a//')+. The solutions of (3.7) become small 

1 
outside layers defined by 

(y - 1) [ 6 ( t  - 41-3  = O( 1) 

and (d-y)[d(t-x)]-* = O(1). 

y = d  
A 

y = l  C 

D 

y=o 
x = o  X = P  

(a) d e = ;  

(b) e b C - 1  

FIG~RE 2. A schematic picture of the boundary layers that exist when the friction para- 
meter 6 is small. (a)  is the case where the product 6 f  is also small, (b)  the case where 6fis 
of order unity. The layers E and F are of thickness 6 while A and C have average thickness 
of order (6f)&. The Sverdrup (or in case ( b )  the modified Sverdrup) solution is valid in B 
while the zonal solution in valid in D. The western boundary current flows in E. The 
behaviour of the transport lines in F is shown in figure 8. 

When e is small, the layers are thin. Figure 2 (a)  shows the situation for small e .  
In  the region marked B the Sverdrup solution is a good approximation. A and 
the northern part of C are the boundary layers defined by (3.8) while E is the 
layer of thickness of order 6 on the western boundary. If 

$ . = $ M S  on Y = d ,  (3.9) 

the layer marked A is not present. It is useful on occasions to apply the condition 
(3.9) on y = d instead of the condition $ = 0 so that the solution is virtually 
independent of the value of d. 
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Consider now the region y < 1. This may be regarded as a zonal channel with 
an unknown condition on the line y = 1. It may be expected that the solution 
tends to the zonal solution 

(3.10) 

as E -+ 0 except near the line y = 1. Near that line a correction of y3 must be added, 

(3.11) so let 

Q must satisfy the homogeneous equation (3.6)) be periodic in x with period P 
and have given values on y = 1. If 6 / t  is small, the solutions are close to solutions 
of the parabolic equation (3.7) and (Carslaw & Jaeger 1959, $2.6) are expres- 
sible as a sum of terms proportional to 

$ = $zonal + Q for Y < 1. 

4 = exp [iennx/e + (1 - i) (nn/&e)+(y- i)], (3.12) 

where n is an integer. These terms vanish outside a boundary layer of thickness 
of order €3. This layer is shown as the southern part of the region marked C in 
figure 2 (a), leaving a region D in which the zonal solution is a valid first approxi- 
mation. Thus the composite picture for small F is rather complicated with the 
solution being approximated either by the Sverdrup solution (region B) or the 
zonal solution (region D) except in the boundary layers A, C, E and F. If E is 
not small, there is still a structure due to 6 being small, as shown in figure 2 (b) .  
As 6+0, the solution approaches a solution of the parabolic equation (3.2) 
everywhere except in the boundary layers E and F. It is still possible to distinguish 
a region B in which the modified Sverdrup solution is a first approximation, but 
this may only include part of any line y = constant. Thus even if the boundary 
condition (3.9) is used on y = d,  the solution will still depend on d in the region 
marked A in figure 2 (b ) ,  the boundary of A being the reflexion of the first of the 
curves (3.8) in y = d. For the dependence on d to be weak it is necessary that 
(d  - 1)e-4 be above a certain value. 

Consider now how the total transport $tot depends on 6 and P when 6 is small. 
Solutions of the parabolic equation (3.2)) which approximate solutions of the 
full equation over most of the domain of interest, have the property that $/t  
depends only on x/&, y and E = 6P. Thus, to first order, $to,lB depends only on e. 
Errors for small 6, are of two types. One error, of order (6/t)*, is due to the term 
neglected in the governing equation, and another error is due to the boundary 
layers E and F. The latter errors may be expected to tend to zero in a similar 
manner to exp ( - 2/6). 

The way y?tot/l depends on F for small e will be found in $ 5  by matching solu- 
tions valid in the regions marked B, C and D in figure 2 (a). It is assumed, how- 
ever, that terms of the form (3.12) are small near y = 0, or rather, accounting for 
properties of symmetry about y = 0, at  y = - 1. The errors involved are pro- 

(3.13) portional to  

which is less than exp ( - 1) for all positive integers n if E is less than 47r. 

exp [ - 2(@4e)aI, 

The next two sections are more or less independent of each other. The numeri- 
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cal results are presented first ( 5  4) because they were obtained first and helped 
in the formulation of the ideas which led to the analytical solution discussed 
in 95. 

4. Numerical solutions 
A series of numerical solutions t o  the governing equation (2.13) were obtained 

by Dr J. W. Elder (see Elder 1968) using a general system for solving elliptic 
differential equations in two dimensions. The wind stress was assumed to have 
the form X = X(y), Y = 0, with the following distributions for X as a function 
of y: 

5 . ny X = X ,  + ~ s1n ----, 
7r 3 

and x = x,. (4.3) 

In  each case X ,  is a constant. The first corresponds to having a maximum 
wind stress at  54.4" S and a separation between maximum and minimum stress 
of 26.4". The second has a maximum a t  50" S and a separation between the 
latitudes of maximum and minimum stress of 22". The boundary condition 
(3.18) was applied at  y = d. 

The results are shown in table 1 and in figures 3 and 5. The results will be 
discussed first and the choice of parameters discussed later. Figures 3(a), ( b )  
and ( c )  show how the solution depends on e for a fixed wind stress distribution 
while comparison of 3(b) with 3 ( d )  or 5 ( a )  with 5 ( b )  shows the dependence on 
wind stress pattern for a fixed E .  For comparison, a smoothed and simplified 
version of the transport lines as given by Kort (1962) is shown in figure 4. So 
that a quantitative comparison can be made, it is assumed that the quantity 
Tt/P by which the number ?,ktot/P must be multiplied to give the transport through 
the passage in dimensional terms is equal to 3 x los m3/s. This corresponds to 
half the difference between the maximum and minimum wind stress being 
1.6 dyne cm-2 for the distribution (4.1) and 1.3 dyne em-2 for (4.2). 

Consider first figure 3. Figures 3 (a) ,  (b)  and ( c )  correspond to the wind stress 
distribution (4.1) with X ,  = 0 while 3(d)  corresponds to (4.2) also with X ,  = 0. 
The values of e are shown. Comparison of figures 3(a), ( b )  and ( c )  shows that as e 
increases, the current becomes both broader and weaker. The weakening of the 
current is due to the increased frictional stress while the broadening is due to the 
increase in thickness of the boundary layer marked C in figure 2. The east-west 
asymmetry is apparent in all cases, this being associated with the formation of a 
western boundary current. In the interior of the basin, the current is relatively 
broad and moves southwards as well as eastwards, narrowing as it approaches 
the passage. The convergence of the transport lines is particularly marked at  the 
northern end of the passage indicating very strong currents there. These currents 
lead into a northward-flowing boundary current which is also intense and feeds 
the broader current in the interior. 

The pattern deduced from observations by Kort has similar features, the main 
difference apparently being due to the presence of New Zealand and the shallow 
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(a) ~ = 0 4 5  $,#=5.22 (16x108m3/s) (b) ~=1.25 ft,&=2.22 (6.7x108m3/s) 

FIGURE 3. Some numerical solutions showing the dependence on the friction parameter 
E [(a) ,  (b ) ,  (c)] and on the wind stress distribution X(y) [ ( b )  and (d)] .  X is given by (4.1) 
in cases (a),  (b)  and (c )  and by (4.2) in case (d),  X ,  being zero. The maximum wind stress 
is further north in the case (d ) .  The contour interval for qk is &htOt. The figures in brackets 
represent the equivalent dimensional transport, 

Ur,, = 1 5  x 10' m3/s 

FIGITRE 4. Transporb lines after Kort (1962). The north-south scale has been exaggerated 
and the lines havo been smoothed somewhat. 
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area to the south. The current is broader and weaker than those shown in 
figures 3(a ) ,  ( b )  and ( c )  suggesting a higher value of the friction parameter. The 
tendency for currents to be much stronger at  the northern end of the passage 
has been noted by Gordon (1967). 

I I 

$=+tot 0 1’1 - - - - - - - - - - -  t 

% - - - - - -  

P = 3 m  t (b) X,=-O9,+,Jl=O65 ( 2 ~ 1 0 ~  m3/s) 

FIGURE 5 .  Two numerical solutions for a different geometry, the wind stress being given 
by (4.1). The second shows the effect of adding a uniform westward stress. E = 1.8 in both 
cases, and the figures in brackets represent the total dimensional transport, 

Comparison of figure 3 (d ) with 3 (b )  shows the effect of moving the wind stress 
pattern to the north, or more precisely, replacing the pattern (4.1) with X, = 0 
by (4-2) with X ,  = 0. The current is weakened because the stress in the latitudes 
of the passage is less. An interesting feature is the weak gyre in the south-west 
corner in which currents are partly moving against the wind. 

The results for a different geometry are shown in figure 5. The boundary 
which corresponds to Antarctica was moved south to y = 1 - d. This geometry is 
perhaps more like that of the Southern Ocean with the boundary x = P,y < 0 
playing a, role similar to that of Graham Land. The current still tends to be north 
of the latitude of the centre of the passage because the wind stress is stronger to 
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the north. There is a weak westwards flow near the southern boundary due to 
the easterly winds there, and figure 5(b )  shows how this westwards flow is 
intensified if the easterly wind is made stronger. (Note that easterly means 
from the east.) 

Convergence 
Wind Southern error Theoretical 

Run E stress boundary lttOklf S d- 1 SIV so (%I l t t o t I F  

1 1.25 (4.2) y = 0 2.00 0.25 1.5 2 0-725 5 0 . 0 1  2.46 
2 1.25 (4.2) /J = 0 1-60 0.20 1.5 1.0 0.35 & 3-3 1-91 
3 1.25 (4.1) ?J = 0 2.25 0.25 1.5 2 0,028 kO.02 2.65 
4 1.25 (4.3) ,q = 0 0.50 0.25 1.5 2 0.381 kO.02 0.580 

A 0.45 (4.1) y = 0 6.25 0.15 1.5 1.8 0.33 * 5.5 7.07 
6 0.45 (4.1) y = 0 0 0.15 1.5 1.8 -1.88 f - 2.3 0.12 

7 3.33 (4.1) y = 0 1.00 0.33 2.33 2 -0.122 2 0-04 1-07 
8 3.33 (4.1) y = 0 0 0.33 2.33 2 -1.69 kO.5 -0.24 

9 1-8 (4.1) y = 1--d 2.67 0.30 1.5 1.8 0'545 k0.6 3.24 
10 1.8 (4.1) y = 1-cl 0 0.30 1.5 1.8 - 1.37 k 0.7 - 0.18 

12 0.8 (4.3) y = 0 1 0.40 1.0 4 0.590 < O . O l  
11 0.8 (4.3) y = 0 1 0.40 1.0 2 0.602 <0.01 

13 0.8 (4.3) LJ = 0 1 0.40 1.0 Ci 0.586 0.03 

TABLE 1 

Table 1 shows the parameters used for the actual computations. The first 10 
runs are arranged in four groups for each of which E was fixed. For each value of 
6 and type of wind distribution, (4.1) or (4.2), it  was arranged that when the 
solution was known for one value of X, ,  the solution for any other value of X ,  
could be found by combining that solution with another in the same group. 

Since $/4 depends mostly on E = 64, x/t and y, the dependence on 614 being 
weak, values of 4 more convenient for computation than the actual value could 
be used. This weak dependence on 6/4,  however, does not apply in the narrow 
region of the western boundary current so the transport lines shown in the figures 
may be distorted there. A test of the dependence of the solution on 6/4 was made 
in runs 1, 2 and 4. Comparison of the results of run 2 with a linear combination 
of the results of runs 1 and 4 shows that a change of 50 yo in 6/4 makes a change 
in $t,t/4 of only 3 yo. The distortion of the western boundary current is mainly a 
change of width only. In  all the computations, except the test runs 11-13, 
614 was kept below 1/20, and 6 below Q. In  order for dependence on d to be weak 
(1 - d )  e-4 was kept above unity. 

Runs 11-13 were designed to test dependence on the numerical parameter N 
which is the number of grid intervals across the gap. The parameter 6N shown 
in the table is the width of the western boundary current:in grid intervals. This 
had to be above 1.5 for the numerical scheme to converge. Runs 11-13 indicate 
an error in X, of about 3 yo when 6N is 3. Also shown is the ' convergence error ' 
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in the value of $ at the centre of the grid. This value was printed after each 
iteration involved in the numerical scheme and usually showed a damped oscilla- 
tion. The convergence error indicates the amplitude of oscillation at the last 
iteration. Another indication of the numerical error due to the small value of 
6N used was provided by the integral (2.14) which was used to calculate the 
value of X,. The calculation was made for different values of y between 0 and 1. 
The value at one grid point from y = 1 was always higher than values near 
y = 0.5 by up to 0.014 although values for y near 0.5 varied by less than 0.002. 
The improvement with increase of 6N showed up in runs 11 to 13 in which the 
maximum differences of this type were respectively 0-006, 0.004 and 0.001. 

5. An analytic solution for small friction 
The problem of finding solutions analytically is not as straightforward as it 

might be because of the unusual geometry involved. The aim of this section is to 
find, for small values of e, the function 4 defined by (3.5) and (3.11). This function 
satisfies to first order as 6-+ 0, the parabolic equation (3.7) and vanishes outside 
the region marked C in figure 2 (a).  As indicated in $3,  terms of order (3.13) will 
be neglected so that the fractional error may be expected to be less than e-1 if 
e is less than 12. It is helpful to use boundary-layer co-ordinates defined by 

7 = = ( e -x ) ’e ,  (y- l)/& 1 
Then (3.7) takes the form 41/11 - 46 = 0, (5.2) 

which involves no parameters explicitly. The parameter e only arises when the 
matching condition at y = 1 is brought in. This condition is that $ and $y are 
continuous at  y = 1, the relation between 4 and $being given by (3-5) and (3.11). 
The series form (3.4) of $Ms and the integral form (3.11) for may be used 
t o  express $Md and $zonal as power series in E valid for c, q of order unity. Thus 
the relations (3.11) and (3.5) may be written 

Note that for each non-negative integer rn,e$(m--l) is multiplied by the mth 

derivative X(”) of X at y = 1. This fact enables variables to be written in the 
following simple series forms 

m=O 
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Each q5m is a function of 5 , ~  only and each a;, is a constant. 4, and 0;n do not 
depend on e or the wind stress. As soon as q5m and vm have been determined, the 
total transport can be calculated for any small e and any wind stress distribution 
X(y) using (5.4) and the transport function can be calculated using (5.3) and 
(5 .5) .  

The equations and boundary conditions to be satisfied are as follows. Each 
$, satisfies equation (5.2)) tends to zero as 171 -+m, vanishes on 5 = 0 for 7 > 0 
and is periodic in 6 with unit period for 7 < 0. In addition there is the requirement 
of continuity of @ and @q on 7 = 0 and the condition (2.14) for continuity of the 
pressure field. The condition a t  7 = 0 follows from substitution of (5.4) and (5.5) 
in (5 .3 ) .  Using the affix+ to denote a value a t  7 = O +  and the affix - for a 
value at  7 = 0 - , these conditions may be written 

(5 .6)  

(5.7) 

@m = $;+a;, = $f+sm-,,tg(m+1)/r[8(m+3)], 
@mq = $iq-amo = $fq+8met’m/r [g(m+2)I  -am,,  

where 
1 if m is even, 

0 if m is odd. am, = 

The pressure continuity condition (2.14) applied at 7 = 0 - leads to the conditions 
n. 

(5 .8)  

The method of solution consists of finding relations between $+ and q$& and 
between q5; and $mq which, used in conjunction with ( 5 . 6 ) )  (5.7) and (5 .8)  
yield the solution. These relations may be obtained from well-known solutions 
of the heat equation (5.2)) given, for instance, in Carslaw & Jaeger (1959, chapter 
2).  In  particular, use will be made of the fundamental solution 

For thermal problems this solution is well known as that corresponding to an 
instantaneous plane source of heat. In  the ocean current problem it represents 
the (approximate) solution due to a concentrated point, or &function distribu- 
tion, of wind stress curl applied at  f [  = t ,  7 = 0. Such a distribution has been 
called a wind stress ‘tweak) by Longuet-Higgins (1965). The function $ in the 
region 7 > 0 is proportional to the transport function distribution induced by a 
set of wind stress tweaks of strength @(t )  distributed along the line 7 = 0. 
Thus (Carslaw & Jaeger 1959, chapter 2) 

4 = -n-9 /‘+T(t)(t-t)-gexp [ - 7 2 / 4 ( ~ - t ) l d t  

$ = ?r+/‘ f(t)(k-t)-gexp [ - 7 2 / 4 ( ~ - t ) l d t  

(5.10) 
0 

for 7 > 0 ,  and similarly 

(5.11) 
--m 

for 7 < 0 ,  where 
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The latter form (5.11) arises because of the periodicity 
7 = 0 in particular these give the desired relations: 

5 
$- = 7.d J f ( t )  (t - tj-kdt. 

- m  
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condition. Applied at 

(5.12) 

(5.13) 

The second integral (5.13) converges because of (5.8). It is in a form which is 
awkward to exploit as it stands because it involves the function f ( t )  so (5.13) 
will be replaced by an equivalent set of properties of the integral. The first pro- 
perty is that the mean value of $- is zero, 

(5.14) 

which is a consequence of (5.8) and the periodicity of $-, and can be proven 
using (5.13). The other property that will be used is 

which follows directly from (5.11) and (5.13). Strictly speaking $- and $7 are 
not defined at  1 + [ so are to be regarded as analytic continuations of $- and 
4; as defined on 0 < 6 < 1. The properties (5.14) and (5.15) will be used in place 
of (5.13) and regarded as equivalent. 

Substituting the expressions for 4- given by (5.6) in (5.14) and (5.15) and use 
of (5.12) leads to the equations 

and 
1+5 

dJt [& ( 1 + t)  - $; ( t ) ]  (t - t)- idt  = - 7 . - q  $A7 ( t )  (t - t)%t 
0 5 

In  order to solve these, it  is convenient to express $mrl as a power series in @, 
namely m 

+m7 = $mrg+(-/r[i(r+ 91. 

am = - x $,,/r[g(r+ 4)i + i / r [ i ( m +  511, 

r=O 

A similar series for $A7 follows from (5.7). Substituting in (5.16) gives 
m ,  

r=O 

while substitution in (5.17) gives, equating coefficients of [as 

for s = 0 , 1 , 2 , .  . . . In  addition, condition (5.8) gives 
m 

2 $mr/r~i(r+ 311 = 0, 
r=O 

which is the same as (5.19) for s = - 1. 

(5.18) 

(5.19) 

(5.20) 

(5.21) 
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The procedure for solving the matrix equation (5.20) with r ,  s + 1 ranging from 
0 to co was simple truncation, allowing the indices r ,  s + 1 to range only from 0 
to M .  The truncated matrix equation was solved on the TITAN computer at  
Cambridge. Convergence was quite good for small values of r but not so good for 
the larger values. For instance, the results for q5mo (m < 10) for M = 16 and 
2M = 23 agreed to 4 figures while values of (r > 6) sometimes differed by more 
than 10%. Some values, which agreed to the accuracy shown for M = 16 and 
M = 23, are: 

$oT = - 0.5000, 0.6315, - 0,1357, 0.062, 0.066, 
#lr = -0.4120, 0.1964, 0.2567, 0.187, -0.007, 
$2, = -0.2947, 0.1948, -0.2764, 0.780, -0.148, 
#3r = - 0.1887, 0.1556, - 0.2460, 0.300, 0.245, 
#4r = -0.1103, 0.1074, -0.1856, 0.260, -0.285. 

The values of q5, were then used to evaluate rm using (5.19) with summation 
from 0 to M only. Convergence was good with agreement between values obtained 
for M = 16 and 23 to 4 significant figures for all values of m up to 16. The values 
up to m = 11 are: 

rWL = 0.8239, 0.5894, 0.3774, 0.2206, 0.1193, 0.0603, 
0.0288, 0.0130, 0.0056, 0.0023, 0.0009, 0-0003. 

These values can be used to calculate qktot/t as a function of 6 and of the wind 
stress distribution using (5.4) The result can be extended by symmetry to the 
case where the southern boundary is not at y = 0 but sufficiently further south, 
as in figure 5. In  this case $tot is given by 

$btot/a = j l X ( y ) d y / c +  rm€+(m- l ) (X(m)+  ( -  1)""XJ"))) (5.22) 

where XbmJ signifies the mth derivative of X(y) evaluated at  y = 0 instead of at  
y = 1. In dimensional terms, the formula is 

m 

0 ?I&-0 

Figure 6 shows the values of $tot/P computed from both formulae (5.4) and (5.22) 
for the sinusoidal wind stress distribution 

(5.23) 

The wind stress has a maximum at y = 3 -pi6 and on figure 6 the corresponding 
latitude of maximum wind stress is shown assuming Drake Passage extends 
from 56-6"s  to 61.0" S. The results shown here will be used as a basis for dis- 
cussion in the next section. 

The above results can also be used to find the pattern of the transport lines. 
To find q5 for 7 > 0, (5.10) can be used. The necessary expression for q5: follows 
from (5.7) and (5.18). The result, written in terms of $ is 

m 

(5.24) 

where the results of Carslaw & Jaeger (1959, $2.9) have been used and the error 
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function integrals are defined in appendix I1 of the same book. The coefficients 

a, = - q5mT ~&-1)x(m)  + a,-*, , 4 ( 7 - 2 ) ~ ( ~ ) .  (5.25) 
a, are defined by m 

m=O 

50" S 

1 2 4 5 6 

E 

FIGURE 6. @t,,t/f as a function of the friction parameter E and the wind stress distribution 
given by (5.23). The latitude of maximum stress for each distribution is indicated at the 
right. The contour interval for is +. The broken lines correspond to the geometry of 
figure 3, the contours being calculated by (5.4). The solid contours correspond to the 
geometry of figure 5 and are calculated by (5.22). 

FIGURE 7. Transport lines given by the analytical solution (5.24) for E = 6 and p = 3. 
The value of $tot/fgiven by (5.4) is 0.63 and the value of a, is 0.27. 

Although the solution (5.24) has been derived for 7 > 0 it is valid also for 7 < 0 
by analytical continuation. The pattern given by the above expression is shown 
in figure 7 for the wind stress pattern (5.23) with E = 6 and p = 3. This case was 
selected as giving a realistic total transport with a wind stress pattern close to 
the actual one, and the transport lines may be compared with the observed ones 
in figure 4. 

31 Fluid Mech. 38 
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The above solution is not valid in the thin boundary regions E and F, so 
different expressions will be needed there. The appropriate solution in E is well 
known as a western boundary current, and satisfies (3.3). The solution in F is 
not so easy to obtain as only the forcing term on the right-hand side of the full 
equation (2.13) can be ignored near there, so that the approximate equation has 

FIGURE 8. Transport lines, as given by (5 .28) ,  near the tip of the peninsula which corres- 
ponds in the model to  Cape Horn. There is a transport of 2a, which goes into a ‘western 
boundary current ’ seen here to the right of the diagram. There is no exaggeration of the 
north-south scale. 

the form (3.6). It is necessary to find a solution of this equation which satisfies 
the boundary condition on x = 0 , t ;  y > 1 and has the same asymptotic form 
away from the singularity as (5.24) does near the singularity ((, 7 --f 0), that is 

$/e  - a, erfc (7/2@). (5.26) 

The appropriate solution of (3.6) can be obtained in terms of parabolic co- 
ordinates u, v defined as follows 

(5.27) 

2uv = (y- l)/S = €b//8* J 
The co-ordinates are defined in a way which puts the point x = 0, P ;  y = 1 a t  the 
centre. It is also necessary to give a sign convention as the above definition is 
not unique. A suitable convention is u, v > 0 for (, 7 > 0, u > 0, v < 0 for 7 < 0 
and u,v < 0 for [ < 1, 7 > 0. Tho co-ordinates are discontinuous on the line 
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which corresponds to the South American peninsula. u = v > 0 corresponds to the 
east coast and u = v < 0 to the west coast of the peninsula. The equation (3.6) 
when written in terms of the parabolic co-ordinates is separable and solutions 
for the separated equations can be written in terms of error function integrals, 
in erfc (2 )  and Hermite polynomials, H, (2 )  (Erddyi 1953, volume 2). The solution 
which satisfies the boundary conditions on u = v and asymptotes to (5.26) as 

(5.28) 
u,v+cois $ / k  = a, [erfc (v) - eua-f12 erfc (u)]. 

This equation gives the pattern of transport lines near the point [ = 0 , l ;  7 = 0, 
as shown in figure 8. The currents are very strong in this neighbourhood and are 
in fact infinite a t  the tip of the peninsula. A transport of a,[ passes within a 
distance of +S of the tip of the peninsula. Note also that there is no exaggeration 
of the north-south scale in this diagram so the transport lines to the west of tho 
peninsula do not appear to converge as rapidly as in previous figures. 

(5.28) also allows an estimate to be made of the error involved in using the 
approximate equation (5.2). The difference between the expressions (5.26) and 
(5.28) for + / I  at 6 = 1 , ~  = 0 is approximately a, (8 /r t )&.  This should be compared 
with the value of 2a, for $ / e  given by (5.24) at the same point so the percentage 
error there is ( S / 4 r t ) 3 ,  and so less than 7 yo if 8 / t  is less than & as in the computa- 
tions, and less than 2 yo if P = 42 and e < 8 as may be expected to hold in practice. 
Errors in $tot would be expected to be no greater. 

6. Evaluation of the results 
The results suggest a value of e between 4 and 6 which indicates a fairly strong 

coupling between the currents a t  different latitudes. An indication of this is 
that the first term in the expression (5.4) for the total transport, that is the zonal 
transport term, represents only 25 to 40% of the total transport. The greater 
part of the transport is due to frictional coupling with the currents to the north 
which are driven by strong westerlies. Comparison of the results for the figure 1 
geometry with those for the figure 5 geometry indicate that frictional coupling 
with currents to the south can decrease the total transport due to the easterly 
winds there, but this effect is probably not strong in practice because the easter- 
lies are relatively weak. The strength of the coupling also means that a large 
proportion of the water going through the passage is directed into the western 
boundary current. The proportion is given by 2a,P/$to, and for the case p = 3 ,  
e = 6 shown in figure 6 is about 8, that is, all but 3 of the water passing through 
the passage goes into the western boundary current and moves north of the 
latitude of Cape Horn. This feature is also apparent in the observations (figure 4). 
A concentration of the currents at  the north end of Drake Passage is also 
indicated. The current distribution inferred for observations by Gordon (1967) 
shows the same feature. The conclusion is not altered when the figure 5 geometry 
is used because the easterlies to the south are weak compared with the westerlies 
to the north. Also the water to the south is often shielded from the wind by ice. 

The largish value of e also implies the western boundary current goes well to 
the north of the passage resulting in a strong east-west asymmetry in the 
pattern of transport lines. Comparison of the calculated results in figures 3, 5 

31-2 
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and 6 with figure 4, however, suggests that in actual practice the asymmetry is 
even stronger. The other significant difference between observation and calcula- 
tion is the appearance of kinks in the transport lines to the south of New Zealand. 
This is clearly associated with the presence of New Zealand since addition of 
another meridional barrier in the model to  correspond to New Zealand would 
lead to the same effect. Possible explanations of the greater asymmetry are the 
effects of bottom topography, the non-zonality of the actual wind stress, and a 
poor representation of the friction processes. These three effects will now be 
considered in turn. 

Effect of bottom topography 

The effects of large scale bottom topography on the circumpolar current have 
been discussed by Kamenkovich (1962), who calculated the equivalent of the 
zonal transport term in the series (5.4) for @tot//'. The magnitude of this term is 
not strongly affected by the bottom topography but the course of the current can 
be shifted since there is a tendency to follow lines of constant f / h  where h is the 
depth. These lines are parallels of latitude when the depth is constant. Kamen- 
kovich shows in his figure 8 the contours off/h when the larger scale depth varia- 
tions are taken into account. These lines tend to be further north in the Atlantic 
segment than in the Pacific segment which means the currents would tend to go 
further north in the Atlantic as observed. 

It should be noted, incidentally, that Kamenkovich used only the equivalent 
of the zonal transport term in the series (5.4). This gives a value of of the 
observed order for a value of e between 4 and + of the value required when the 
full series is used. The corresponding value of eddy viscosity is lower by a factor 
of 6 to 16, which explains why Kamenkovich required an eddy viscosity of only 
1-4 x lo2 cm2/s to obtain a reasonable result. 

Non-xonality of wind stress 

The wind stress pattern appears to have a marked east-west asymmetry rather 
similar to that exhibited by the currents. This asymmetry is probably due to the 
effect of the Andes on the winds which resemble the effect of the South American 
peninsula on the currents. Wyrtki (1960) gives a map of the distribution of 
maximum westerly winds which shows the asymmetry quite clearly. The non- 
zonality of the wind stress pattern may be expected to increase the east-west 
asymmetry of the current pattern. 

It is not difficult to incorporate the effects of non-zonality of the wind stress 
in the analytical solution. One can illustrate with the solution for one Fourier 
component of X of the form 

x = sin (7+ky+a),  2 m x  

where n is an integer. A wind stress distribution of this type was considered by 
Wyrtki (1960), who did not, however, take into account the effect of meridional 
barriers. The solution for the case where there are meridional barriers, but no 
east-west boundaries, is simply 

@ = ?kP(X, Yf - @ P P J  Y) + @I(., YL 
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where $p is the particular periodic solution of (2.13) 

mk sin (mx + Icy + a) - 6(m2 + k2)  cos (mx + ky + a) 
lcrP ( 2 7  Y) = m2 + a2(m2 + k2)2 9 

m = 2nn/P, 

and $l is the solution of (2.13) for the zonal wind stress distribution 
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If 6(m2 + k2) < m, as fits the case n = 1, k = &r, E = 6, then $p is approximately 
the solution of Sverdrup's equation. The amplitude of $p is k/m, which is small 
compared with the amplitude 1/6k for the corresponding zonal stress distribution 
m = 0. The ratio 6k2/m is about for the case n = 1, Ic = Qn, E = 6, and is 
smaller for larger values of n. Thus the contribution to $ of the non-zonal part 
of the wind stress is small compared with the contribution from a zonal wind 
stress of the same amplitude and north-south wave-number. 

The form of fr ic t io~al  resistance 

The indicated value of 6 of 4 to 6 corresponds to a width W of the western boun- 
dary current of 50-70 km. This may be compared with the value of 100 km 
which Stommel (1948) found gave a good fit to data for the North Atlantic. 
The coefficient of eddy viscosity given by (2.4) is between lo3 and 2 x lo3 cm2/s 
and the corresponding thickness for an Ekman layer is 45-60 m. To obtain an 
idea of the importance the type of friction has on the calculations one can easily 
work out the form of solution for a lateral friction model and make comparisons. 
I f  the coefficient of eddy viscosity in the lateral-friction model is A ,  the equation 
analogous to (2.6) is 

The boundary conditions are the same as those in the bottom friction model 
except for the additional condition that normal derivations of Y must vanish on 
solid boundaries and the condition for continuity of pressure analogous to 
(2.7) is 

A YVf/&x- Xdx = 0 for 0 < y < B. 

The structure of the solution is very similar to that shown in figure 2, the boun- 
daries being defined in an analogous way. The e-folding distance W for the 
boundary layer corresponding to E in figure 2 is given by 

-AV4Y+/3YPz = Yz-X,. 

s: s: 
6 w = 2 (i) , 

and there is a similar region adjacent to the eastern boundary. The associated 
non-dimensional parameter is 

Non-dimensional quantities may be defined by (2.12) as before, and the analogue 
of (5.4) is an expansion for $t,t/t in integer powers of ( a t ) i ,  the leading term 
corresponding to the zonal transport of order (at)-l.  Both (5.4) and its analogue 
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may be regarded as power series in the average non-dimensional thickness, t ,  
of the boundary-layer C which, on the basis of e-folding distances, is about 
t = 1.5(8l')$ in the bottom-friction model and about t = 4(aP)g in the lateral- 
friction model. The leading term, however, in the expansion for $toill' is pro- 
portional to t-2 for the bottom-friction model and proportional to tp4 for the 
lateral-friction model. This difference does not seem to be very significant for the 
case in hand, however, since t is of order unity. If, for the wind stress distribution 
(5.23) withp = 3 to 5, the leading term in the expansion of $.,ot/l' were dominant 
and $tot/l' N +, then at  would be between 0.12 and 0.17 and t about 2.4. This 
indicates that frictional coupling is important and the remaining terms in the 
expansion of $tot/l' are of the same order as the first. Assuming these terms add to 

as they do in the bottom-friction model, a larger value of a must be taken to 
make $to,/P about $. In  dimensional terms, this means the eddy viscosity 
coefficient A must be greater than 3 x lo7 cm2/s. If, as in the bottom-friction 
model, the transport is about 3 times the zonal transport, then the appropriate 
value for A is about lo8 cm2/s. The factor 3 is only a guess but probably is the 
right order, since the non-dimensional friction layer width, t ,  is about the same 
as in the bottom-friction model. This also implies that the east-west asymmetry 
is about the same in the two models. The width W of a western boundary current 
for A = 10s crn2js is by (6.1), about 200 km. This is wider than in the bottom- 
friction model, so currents in regions E and F of figure 2 would be less intense 
than in the bottom-friction model. 

Despite the difference between the two models, the conclusions reached are 
much the same. Both indicate a strong frictional coupling, this being indicated 
by the region C being about 3 times the width of the gap. The circumpolar 
current is thus several times wider than the gap and the transport a few times 
the zonal transport corresponding to the gap width. There is a significant 
difference between the two models, however, if time variations are considered. 
The time scale in the bottom-friction model is r-l which is around lo6 see or 
10 days, while for the lateral-friction model the time scale is L2/A where L is an 
appropriate length scale. The thickness of the frictional coupling layer is over 
1000 km and the corresponding time scale over lo8 days or 3 years. In  short, the 
lateral-friction model responds much more slowly to changes with time and would 
not reflect seasonal changes to the extent that a bottom-friction model would. 

One would like to be able t o  draw firm conclusions as to the nature of the 
principal friction processes operating in the Southern Ocean from the above 
estimates of eddy viscosity, but both figures fall within the range of values 
found from direct observations (Defant 1961, volume I, chapter 111, $2)  so 
neither mechanism can be rejected from that viewpoint. 

A more general comparison of the two processes can be made by considering 
the eastward components of forces acting on the volume of ocean bounded by 
56.6" S, 61-0" S, the ocean surface and the ocean floor. This comparison does not 
rely on the concept of eddy viscosity or the use of a linear friction law. The 
question is: what is the most important force balancing the wind force of about 
1017 dyne acting on the surface of the strip of ocean? If it is a frictional force on 
the bottom, the bottom stress must on average be of the same order, 1 dyne/cm2, 
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as the surface stress, as indicated by (2.2). If the drag law relating the bottom 
stress to the bottom velocity is roughly given by (Defant 1961, volume 2, p. 514) 

Xbottom = 0.002Av~ottom)2~ 

bottom velocities of around 20 cm/s would be required. Such large values would 
appear to be inconsistent with indirect evidence based on a comparison between 
the relative velocity field deduced from hydrographic observations and either 
direct measurements of surface drift velocities or the estimate by Gordon (1967) 
of the transport through Drake Passage. The alternative one has in mind when 
invoking a lateral friction process is that the wind force is balanced by a north- 
ward momentum flux out of the volume of ocean concerned. Since the area across 
which the flux takes place is about 1015 cm2, a mean value of the flux puV per 
unit area would need to be about 100 dyne/cm2. Assuming that the principal 
part of Uv is due to the fluctuations of u and v about their mean values, the magni- 
tude of the fluctuations would need to be at least 10 cm/s, that is, of the same 
order as the mean velocity. Another force which acts on the volume is the Coriolis 
force due to the northward movement of water discharged from the Antarctic 
continent, but if the figure for the rate of discharge estimated by Barcilon (1966) 
is of the right order, this force is less than 1015 dyne and so may be neglected. 
Although by no means conclusive, the above evidence suggests that bottom 
friction is not of primary importance between the latitudes concerned, but that 
the flux of momentum across these latitudes is important. 

In  addition to the momentum flux due to fluctuations there is a flux due to the 
mean flow. This effect is not expected to be large and is ignored in the linearised 
equations. However, a scale analysis based on the solutions for the linear model 
does show that the non-linear ‘inertial’ terms neglected in the analysis are quite 
important in the regions marked E and F in figure 2, that is in the regions where 
the currents are strongest. This probably means that details in this region will be 
wrong, but not the overall picture. It also means that details of coastline shape 
and bottom topography to the south and east of southern South America have 
important effects on the currents there. These effects would make an interesting 
study, but are outside the scope of this paper. 

Part of this work was carried out at  the Institute of Geophysics and Planetary 
Physics at the University of California at San Diego, and supported there by the 
NationaI Science Foundation under contract NSF-GP-2414. 

R E F E R E N C E S  

BARCILON, V. 1966 J .  mar. Res. 24, 269. 
BARCILON, V. 1967 J .  mar. Res. 25, 1. 

CARSLAW, H. S. & JAEGER, J. C. 1959 Conduction of Heat in Solids, (2nd Edition). Oxford. 
CREASE, J. 1964 Proc. R. Soc. A, 281, 14. 
DEFANT, A. 1961 Physical Oceanography, 2 vols. Pergamon. 
DUNCAN, I. B. 1966 J .  Fluid Mech. 24, 417. 
ECKHAUS, W. & DE JAGER, E. M. 1966 Arch. rat. Mech. Anal. 23, 26. 
ELDER, J. W. 1968 To be published. 



488 A.  E.  Bill 

ERDELYI, A. (Ed.) 1953 Higher Transcendental Functions. McGraw-Hill. 
GOLDSTEIN, S .  1938 Modern Developments in Fluid Dynamics. Oxford. 
GORDON, A. L. 1967 Science, 156, 1732. 
KAMENKOVICH, V. M. 1961 Dokl. Akad. Nauk. SSSR,  138, 1076. 
KAMENKOVICH, V. M. 1962 Trudy Inst. Okeanol. 56, 241. 
KORT, V. G. 1962 Scient. Am. 207, 113. 
LONGUET-HIGGINS, M. S. 1965 Deep-sea Res. 12, 923. 
MCKEE, W. D. 1966 Survey Paper 1, Horace Lamb Centre for Oceanographical Research, 

STOMMEL, H. 1948 Trans. Am. geophys. Un. 29, 202. 
STOMMEL, H. 1957 Deep-sea Res. 4, 149. 
STOMMEL, H. 1962 J. mar. Res. 20, 92. 
STERDRUP, H. U. 1947 Proc. natn. Acad. Sci. U.S.A. 33, 318. 
WYRTKI, K. 1960 Dt. hydrog. 2. 13, 153. 

Flinders University of South Australia. 




